
How we upgraded a massive oilfield data 
gathering and analysis platform; reducing 
storage requirements by 10x, high-use 
query times by 88%, and significantly 
dropping AWS spend.

SummitView is a oil well monitoring application developed by 
Summit ESP (a Halliburton
subsidiary). SummitView receives 
telemetry datapoints from thousands of operating oil wells 
from
around the world. Embedded computers are placed near the 
well and the well’s drive. Using
SCADA interfaces, telemetry data is 
gathered and sent to an “ingestor” in the cloud for cataloging
the 
data long term and providing reporting APIs as well as a 
customer-facing web portal for seeing
well performance.

As SummitView found more success, the operational complexity 
of the product grew. Incyte’s task
was to relieve stress on the 
database, increase reliability of the ingestion, as well as update the 
web
portal code to enable faster and more robust graphing and 
reporting of the data.

incytestudios.com

SummitESP


summitview systems Upgrade 2019


Background & Scope Objectives

before After

2,200 GB 230 GB

before

1,500 GB 95 gb

After

Telemetry table database size, 
before and after upgrade.

Telemetry table index size, 
before and after upgrade.



SummitView’s underlying database was an 
Amazon AWS RDS instance of Postgres 9. The 
schema
for readings (telemetry received by the 
thousands of wells) was not partitioned or 
indexed in a way
that would support continued 
growth of the product. The database 
performance was suffering under
daily use with 
routine reporting queries taking over 45 
seconds to deliver results. The customer 
facing
web portal would take upwards of 5-10 
seconds on some wells to draw the correct 
graphs. The web-portal code was also 
somewhat dated and had lost its primary 
developer (another
contractor)

In addition to the primary web portal, there were 
several third-party applications that depended 
on
the original schema and API. Incyte had to 
adopt a “first do no harm” policy while 
simultaneously
preventing data loss, adding 
new ingestor processes, and updating the 
reporting framework. The
web portal graphing 
code also needed to be replaced in a way that 
would not break any other
portions of the site.

Problem Statement Technologies UsedChallenges

SummitView web interface.

AWS


Postgres 11


TimescaleDB


Vue.js


HighCharts


Falcon


Python


Javascript



Incyte began a 3-pronged approach to the challenges above:








Incyte replaced the tool’s primary database with Postgres 11 + 
TimescaleDB. TimescaleDB is
designed to alleviate several 
issues of collecting large amounts of sensor data. The 
built-in
hypertables of Timescale allowed time-based 
partitioning of the existing data as well as the
familiarity of 
Postgres.
After designing a new storage schema making use of 
hyper-tables, Incyte wrote converters and
migrations to move 
the old data into the new format.



Next, Incyte provided a “view” over the new
data that mimicked 
the older format, allowing 100% backward compatibility with 
older queries and
reports. Once this view was working, Incyte 
converted the ingestors and writers to send data in the
newer 
format. Older consumers of the data were then also converted, 
and the old tables removed to
save space.
During database 
development, the updates to the API and graphing code were 
done simultaneously.



To mitigate scheduling risk, each of the 3 efforts were designed 
to be deployed in isolation, so that
if any of them were delayed 
the customer would still see benefits. Thankfully, all three 
were
completed on time and shipped to the customer’s 
satisfaction.

All work was completed on time and shipped to Summit’s 
customers. The size of the telemetry
tables went from 2.2TB 
data with 1.5TB of indexes down to 230GB data with 95GB of 
indexes, a
10x storage size reduction.



Query performance for reporting and charting saw similar speed 
ups. 30 days worth of readings for
a well went from taking 2.3 
seconds down to .27 seconds; 1 year of data from 8 seconds 
down
to .74s.
The customer also saw reduced cost in AWS as 
far less powerful hardware was required to support
the more 
efficient data use.

Solution

Benefits

before

8 seconds 0.74 seconds

After

1-year Well Chart 
Load Time

before After

2.3 Seconds 0.27 seconds

1-month Well Chart 
Load Time

1. Porting the the Chart.js graphing code to HighCharts


2. Porting the Django API to Python3 + Falcon


3. Replacing the Postgres RDS instance with EC2 

Postgres+Timescale

incytestudios.comLearn More at

Let’s Talk About Your Project

Email Us at sales@incytestudios.com


Call Us at 
(833) 446-2983

Data heavy pages loading 10x faster


	SummitCaseStudy-1@2x
	SummitCaseStudy-2@2x
	SummitCaseStudy-3@2x

